Course Title:	Computer Aided Engineering Drawing							
Course Code	I	22CAED13/23	CIE Marks	50				
Teaching Hour/Week	(L:T:P:S)	2:0:2:0	SEE Marks	50				
Total Hours of Teachi	ing - Learning	40	Total Marks	100				
Credits		03	Exam Hours	03				
Course Learning Obje	Course Learning Objectives:							
CLO1: To understand the basic principles and conventions of engineering drawing								
CLO2: To use drawing as a communication mode								
CLO3:	To generate pictorial v	views using CAD software						
CLO4:	To understand the dev	elopment of surfaces						
CL05:	To visualize engineeri	ng components						
Teaching-Learning (G	eneral Instructions):							
• Students should b	be made aware of powe	erful engineering communication	tool – Drawing.	2				
• Simple Case stud fruitfulness of lea	lies can be suitably sele	ected by the teacher for hands on	practice to induce the feel of	of				
Appropriate Mod hands on practice	lels, Power Point prese	ntation, Charts, Videos, shall be	used to enhance visualization	on before				
• For application p	roblems use verv gener	rally available actual objects. (Ex	ample: For rectangular pris	m / object;				
matchbox, carton	i boxes, book, etc can b	be used. Similarly for other shape	s)	5				
• Use any CAD so	ftware for generating o	rthographic and pictorial views.						
• Make use of sket	ch book with graph she	eets for manual / preparatory sket	ching					
Module-1								
Introduction: for CIE	only							
Significance of Engine	ering drawing, BIS Co	nventions of Engineering Drawi	ng, Free hand sketching of	engineering				
drawing, Scales. Introd	uction to Computer Ai	ded Drafting software, Co-ordina	te system and reference pla	anes HP, VP,				
RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines,								
coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set,								
mirror, rotate, trim, extend, break, chamfer, fillet and curves.								
Orthographic Projections of Points, Lines and Planes:								
Introduction to Orthographic projections: Orthographic projections of points in 1 st and 3 rd quadrants.								
Orthographic projections of lines (Placed in First quadrant only).								
Orthographic projections of planes viz triangle, square, rectangle, pentagon, hexagon, and circular laminae (Placed in								
First quadrant only using change of position method).								
Application on projections of Lines & Planes (For CIE only)								
Module-2								
Orthographic Projection of Solids:								
Orthographic projection of right regular solids (Solids Resting on HP only): Prisms & Pyramids (triangle, square rectangle, pentagon, hexagon), Cylinders, Cones, Cubes & Tetrahedron.								

Module-3

Isometric Projections:

Isometric scale, Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres. Isometric projection of combination of two simple solids.

Conversion of simple isometric drawings into orthographic views.

Problems on applications of Isometric projections of simple objects / engineering components.

Introduction to drawing views using 3D environment (For CIE only).

Module-4

Development of Lateral Surfaces of Solids:

Development of lateral surfaces of right regular prisms, cylinders, pyramids and cones resting with base on HP only. Development of lateral surfaces of their frustums and truncations.

Problems on applications of development of lateral surfaces like funnels and trays.

Problems on applications of development of lateral surfaces of transition pieces connecting circular duct and rectangular duct (For CIE Only)

Module-5

Multidisciplinary Applications & Practice (For CIE Only):

Free hand Sketching; True free hand, Guided Free hand, Roads, Buildings, Utensils, Hand tools & Furniture's etc Drawing Simple Mechanisms; Bicycles, Tricycles, Gear trains, Ratchets, two-wheeler cart & Four-wheeler carts to dimensions etc

Electric Wiring and lighting diagrams; Like, Automatic fire alarm, Call bell system, UPS system, Basic power distribution system using suitable software

Basic Building Drawing; Like, Architectural floor plan, basic foundation drawing, steel structures- Frames, bridges, trusses using Auto CAD or suitable software,

Electronics Engineering Drawings- Like, Simple Electronics Circuit Drawings, practice on layers concept. **Graphs & Charts**: Like, Column chart, Pie chart, Line charts, Gantt charts, etc. using Microsoft Excel or any suitable software.

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Draw and communicate the objects with definite shape and dimensions
- CO 2. Recognize and Draw the shape and size of objects through different views

CO 3. Develop the lateral surfaces of the object

CO 4. Create a Drawing views using CAD software.

CO 5. Identify the interdisciplinary engineering components or systems through its graphical representation.

Assessment Details (both CIE and SEE):

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks) and that for SEE minimum passing marks is 35% of the maximum marks (18 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE)

- CIE shall be evaluated for max. marks of 100 and later the same shall be scaled-down to 50 marks as detailed below:
- CIE component should comprise of Continuous evaluation of Drawing work of students as and when the Modules are covered based on below detailed weightage.

Module	Max. Marks	Evaluation Weightage in marks					
	Weightage	Computer display and print out	Sketching				
		(a)	(b)				
Module 1	15	10	05				
Module 2	20	15	05				
Module 3	20	20	00				
Module 4	20	20	00				
Module 5	25	15	10				
Total	100	80	20				
Consideration of Class work		Total of $[(a) + (b)] = 100$					
		Scaled down to 30 Marks					

- At least one **Test** covering all the modules is to be conducted for 100 marks and evaluation to be based SEE pattern, and the same is to be scaled down to **20Marks**.
- The final CIE = Class work marks + Test marks

Semester End Examination (SEE)

- SEE shall be conducted and evaluated for maximum marks 100. Marks obtained shall be accounted for SEE final marks, reducing it by 50%
- Question paper shall be set jointly by both Internal and External Examiner and made available for each batch as per schedule. *Questions are to be set preferably from Text Books*.
- Related to Module-1: One full question can be set either from "points & lines" or "planes".
- Evaluation shall be carried jointly by both the examiners.
- Scheme of Evaluation: *To be defined by the examiners jointly and the same shall be submitted to the university along with question paper.*
- One full question shall be set from each of the Module from Modules 1,2,3 and 4 as per the below tabled weightage details. *However, the student may be awarded full marks, if he/she completes solution on computer display without sketch.*

Module	Max. Marks	Evaluation Weightage in marks			
	Weightage	Computer display and print out	Preparatory sketching		
		(a)	(b)		
Module 1	20	15	05		
Module 2	30	25	05		
Module 3	25	20	05		
Module 4	25	20	05		
Total	100	80	20		
Considerat	tion of SEE Marks	Total of (a) + (b) \div 2 = Final SEE	marks		

Suggested Learning Resources:

Text Books

- S.N. Lal, & T Madhusudhan:, Engineering Visulisation, 1st Edition, Cengage, Publication
- Parthasarathy N. S., Vela Murali, Engineering Drawing, Oxford University Press, 2015.

Reference Books

- *Bhattacharya S. K.*, Electrical Engineering Drawing, New Age International publishers, second edition 1998, reprint 2005.
- Chris Schroder, Printed Circuit Board Design using AutoCAD, Newnes, 1997.
- K S Sai Ram Design of steel structures, , Third Edition by Pearson
- Nainan p kurian Design of foundation systems, Narosa publications
- A S Pabla, Electrical power distribution, 6th edition, Tata Mcgraw hill
- *Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry*, 53rd edition, Charotar Publishing House Pvt. Limited, 2019.
- *K. R. Gopalakrishna, & Sudhir Gopalakrishna*: Textbook Of Computer Aided Engineering Drawing, 39th Edition, Subash Stores, Bangalore, 2017

COs and POs Mapping (CO-PO mappings are only **Indicative)**

COs	POs											
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	2			3	1		1	1	3		2
CO2	3	2			3	1		1	1	3		2
CO3	3	2			3	1		1	1	3		2
CO4	3	3			3	1	1		1	3		1
CO5	3	2			3				1	3		2

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped